[1]
甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435.
ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435(in Chinese).
[2]
段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4): 622328.
DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622328(in Chinese).
[3]
江驹, 王新华, 甄子洋, 等. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019.
JIANG J, WANG X H, ZHEN Z Y, et al. Carrier aircraft takeoff and landing guidance and control[M]. Beijing: Science Press, 2019(in Chinese).
[4]
MENG Y, WANG W, HAN H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology, 2019, 85(2): 474-80.
[5]
WILKINSON C, FINDLAY D, NICHOLS J, et al. Shipboard aircraft simulation with ship-relative navigation sensor modeling[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1769.
[6]
DING Z, LI K, MENG Y, et al. FLIR/INS/RA Integrated Landing Guidance for Landing on Aircraft Carrier[J]. International Journal of Advanced Robotic Systems, 2015, 12(5): 1-9.
[7]
SEDLMAIR N, THEIS J, THIELECKE F. Flight testing automatic landing control for unmanned aircraft including curved approaches[J]. Journal of Guidance, Control, and Dynamics, 2021, 11: 1-36.
[8]
GUAN Z, LIU H, ZHENG Z, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247. doi: 10.1016/j.ast.2021.107247
[9]
DENG Y, DUAN H. Control parameter design for automatic carrier landing system via pigeon-inspired optimization[J]. Nonlinear Dynamics, 2016, 85(1): 97-106. doi: 10.1007/s11071-016-2670-z
[10]
YANG Z, DUAN H, FAN Y, et al. Automatic carrier landing system multilayer parameter design based on cauchy mutation pigeon-inspired optimization[J]. Aerospace Science and Technology, 2018, 79: 518-530. doi: 10.1016/j.ast.2018.06.013
[11]
ZHU Q, YANG Z. Design of air-wake rejection control for longitudinal automatic carrier landing cyber-physical system[J]. Computers & Electrical Engineering, 2020, 84: 106637.
[12]
WANG L, ZHANG Z, ZHU Q, et al. Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(3): 1089-1105. doi: 10.1177/0954410017746432
[13]
KOO S, KIM S, SUK J. Model predictive control for UAV automatic landing on moving carrier deck with heave motion[J]. IFAC, 2015, 48(5): 59-64.
[14]
张杨, 吴文海, 汪杰, 等. 舰载无人机横侧向着舰控制律设计[J]. 航空学报, 2017, 38(S1): 721489.
ZHANG Y, WU W H, WANG J. Design of carrier UAV lateral/ directional landing control law[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721489(in Chinese).
[15]
吴文海, 张杨, 胡云安, 等. 舰载机着舰非线性反演控制方法研究进展[J]. 系统工程与电子技术, 2018, 40(7): 1578-1587. doi: 10.3969/j.issn.1001-506X.2018.07.24
WU W H, ZHANG Y, HU Y A, et al. Research development in nonlinear backstepping control method of carrier-based aircraft landing[J]. Systems Engineering and Electronics, 2018, 40(7): 1578-1587(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.07.24
[16]
SUBRAHMANYAM M B. H-infinity design of F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 187-91. doi: 10.2514/3.21177
[17]
HANSON C, SCHAEFER J, JOHNSON M. Design of low complexity model reference adaptive controllers[J]. NASA/TM, 2012, 215972.
[18]
LORENZETTI R C, NELSEN G L, JOHNSON R W. Direct lift control for approach and landing[J]. Journal of Aircraft, 1969, 6(3): 240-244. doi: 10.2514/3.44042
[19]
NASTASI R, MARTORELLA P, HUFF R, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach[C]//Proceedings of the 10th Atmospheric Flight Mechanics Conference. 1983: 2072.
[20]
DENHAM J W. Project MAGIC CARPET: Advanced Controls and Displays for Precision Carrier Landings[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016, 1770.
[21]
张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 142-157. doi: 10.7527/S1000-6893.2021.25840
ZHANG Z B, ZHANG X L, WANG J X, et al. An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 142-157(in Chinese). doi: 10.7527/S1000-6893.2021.25840
[22]
DURHAM W, BORDIGNON K, BECK R. Aircraft control allocation[M]. Chichester: John Wiley and Sons Ltd, 2016.
[23]
高强, 谭述君, 钟万勰. 精细积分方法研究综述[J]. 中国科学:技术科学, 2016, 12: 5-16.
GAO Q, TAN S J, ZHONG W X. A survey of the precise integration method[J]. Scientia Sinica Technologica, 2016, 12: 5-16(in Chinese).
[24]
STEVENS B, LEWIS F, JOHNSON E N. Aircraft control and simulation: Dynamics, controls design, and autonomous systems[M]. 3rh ed. Chichester: John Wiley and Sons Ltd, 2017.
[25]
Flying qualities of piloted aircraft:mil-std-1797. (Revision B Notice 1-Administrative)[S]. Washington D.C.: United States Department of Defense, 2012.
[26]
DURAND T S, WASICKO R J. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1971, 4(2): 146-158.